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Abstract—Blockchain systems allow storing digital assets in
a tamper-proof, consensus-based, append-only ledger in a de-
centralized fashion, where no single party has full control. A
blockchain is an immutable, append-only, log of transactions.
Unfortunately, in some cases there is the need to undo trans-
actions that result from intrusions, e.g., when the private keys
of a wallet are stolen, when one of the transaction participants
does not comply with what was agreed upon, or when smart
contract vulnerabilities are exploited by attackers. There are also
accidental scenarios, e.g., when private keys are lost leaving the
associated digital assets inaccessible. Although there have been
a few proposals which allow modifications to the blockchain,
they break the basic guarantees they are supposed to provide.
We propose an approach for wallet owners to recover from
attacks against their digital assets and accidental loss, while still
assuring fundamental properties of the blockchain technology.
We implemented the mechanism for Ethereum / EVM.

Index Terms—Intrusion Recovery, Blockchain, Digital Assets,
Tokens, Ethereum

I. INTRODUCTION

Blockchain technology has been gaining popularity in the
last decade with the rise of interest in cryptocurrencies such
as bitcoin [1] and ether [2]. The initial goal was to have fast
and cheap monetary transactions without involving a trusted
third party, a role that is currently performed by banks and
other financial institutions. As the technology matured, more
use cases were discovered in several fields such as healthcare
[3], business processes [4], and educational certificates [5].
However the learning curve for using the technology is still
relatively high for non tech-savvy users. A minimum require-
ment is to have a set of asymmetric key pairs which are used to
sign transactions that are then submitted into the blockchain.
Handling such keys may be complicated but wallet software is
improving daily, so is accessibility and usability. This allows
more and more users to make use of blockchain to perform
money transfers and store both information and value.

A. Ethereum and Tokens

Ethereum [2] is a public blockchain that was announced
in 2014. The main goal of Ethereum is to provide an open-
ended decentralized platform that enables the development
and use of smart contracts and decentralized applications
with built-in economic functions. In contrast to Bitcoin which
has a limited scripting language, Ethereum is designed to
be a programmable blockchain that runs a virtual machine
– the Ethereum Virtual Machine (EVM) – that is Turing

complete. The EVM allows running low-level machine code
in the form of EVM bytecode. Developers can program smart
contracts using high-level languages such as Solidity1 or
Vyper2, compile them into bytecode and deploy them on the
Ethereum blockchain. These smart contracts are analogous to
objects in object-oriented programming, as they have attributes
that define their state and methods that allow changing that
state. Essentially they are immutable programs that run deter-
ministically in an EVM context and their execution is triggered
through transactions (akin to method calls).

In the Ethereum blockchain, wallets store keys that provide
access to accounts. These accounts are associated with ether,
Ethereum’s intrinsic cryptocurrency, handled at the protocol
level, and optionally to tokens [6]–[8] that are handled at the
smart contract level. Tokens are handled by smart contracts
that are owned by one account, so they encompass a form of
centralization.

Tokens are frequently used to represent private currencies or
value (e.g., capital stock), although they may also serve other
purposes, e.g., representing voting rights, collectibles, identity,
ownership of resources or other types of digital assets. As
of September 2020, the top 10 tokens implemented over the
Ethereum blockchain hold a market capitalization of over $27
billion.3. With such large amounts of value being exchanged,
security and recovery mechanisms are indispensable. There are
a set of standard tokens that can be used in many contexts,
e.g., ERC20 and ERC721 [6], [7].

When a wallet is used to create an account, it generates an
asymmetric key pair and derives the account address from the
generated public key. This address is what uniquely identifies
the wallet owner in the Ethereum blockchain. In order to
interact with the Ethereum network, the private key is used
to digitally sign transactions and the corresponding public
key is used to verify the integrity and authenticity of those
transactions. Unfortunately, if the private key is lost then it
is no longer possible to interact with the network using that
specific account and all the resources linked to it such as ether
or tokens become permanently inaccessible. This may happen
for several reasons, from laptop/smartphone loss or theft, to
ransomware that denies access to the user files. Most wallet
software generates deterministic wallets [9] meaning that the

1Solidity documentation – https://solidity.readthedocs.io/en/latest/
2Vyper documentation – https://vyper.readthedocs.io/en/latest
3CoinMarketCap Top 100 Tokens by Market Capitalization – https://
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key pairs are derived from seed phrases: lists of 12 to 24
words that allow users to recreate both the public and private
keys. However, the user may never store their seed phrases in
paper or digitally, so they may be unavailable when they are
needed for recovery purposes.

B. Blockchain Recovery

There is a considerable corpus of research on intrusion
recovery, i.e., on undoing the effects of intrusions from the
perspective of the user [10]–[16]. These works focus on
removing the effects of an intrusion from the state of a system:
mail server, web application, file system, etc.

In the blockchain domain, instead, recovery mechanisms
are still scarce, something that may be an obstacle for the
wider adoption of this technology. Recovery mechanisms in
this context fall in two categories: data redaction [17], [18]
and transaction reversion [19], [20]. Data redaction refers
to removing data stored on the blockchain. This is useful in
scenarios where data needs to be hidden or removed from the
blockchain, e.g., references to illegal pornography or sensitive
and private information. Nevertheless, this is not the approach
we are interested in this work.

Transaction reversion is a form of blockchain rollback,
where the goal is to either undo specific actions or moving the
state of the blockchain to a previous point in time. Transaction
reversion mechanisms allow for example the rightful owner to
recover his funds in case an address has been compromised,
e.g., because an attacker obtains access to the private key and
proceeds to transfer all the funds to an address he owns.

When addressing issues such as losing access to a private
key of an account, none of the previous works is fit to solve
them without breaking fundamental properties of blockchains,
specifically their immutability. This property means that it is
possible to append blocks to the blockchain, but not to modify
the blocks that are already part of the chain.

C. Our Approach

We present the first full solution for recovering tokens
implemented in Ethereum. Ethereum smart contracts allow
implementing arbitrary applications that may have different
forms of operating and interacting with the external world
(e.g., using clients that are not wallets [5]). Therefore, we
do not aim to recover arbitrary applications, but tokens.
Notice that although we often refer to Ethereum, our solution
applies to other blockchains that run EVM (e.g., Ethereum
Classic, TRON, Cardano, Ropsten) and private blockchains
based on clients that run EVM (e.g., Quorum, Hyperledger
Besu, Pantheon). Our intrusion recovery approach is even more
generic and applies to many other blockchains.

Our approach involves a blockchain-based dispute resolu-
tion mechanism used to determine if a recovery request should
be executed. To perform a recovery action, a claimant first
has to submit a claim that becomes a dispute. If the claim
is supported, the recovery action is executed. Our solution
does not require any changes to the underlying blockchain
protocol; it does not involve changes to the chain of blocks, so

it does not break immutability. Instead, the recovery happens
in a smart contract that contains the balance of tokens of each
account.

The Recoverable Token we propose allows users to recover
their Ethereum tokens in the following scenarios:

• account loss – user lost the access to the private key of
an account and/or corresponding seed phrases and can no
longer recover them;

• account theft – there is reasonable proof to believe that
an account has been compromised;

• chargebacks – payment is made for any good or service
and the payer believes that it did not receive what was
agreed upon.

We implemented our approach in Solidity, the most used
high-level EVM language, and thoroughly evaluated its perfor-
mance on the Ropsten testnet. Our evaluation has shown that
the mechanism allows doing recovery in a reasonable amount
of time and at a reasonable cost, given the benefits of being
able to do such an operation that is currently not supported in
Ethereum or related blockchains.

The remainder of the paper is organized as follows. In
Section II we give an overview of the architecture of the
solution, describe its components and explain the recovery
mechanism. Section III details the implementation and Section
IV its evaluation. Finally in Section V we discuss related work
and in Section VI we state our conclusions.

II. RECOVERABLE TOKEN

This section presents our approach in detail.

A. Recoverable Token Architecture

Figure 1 shows the architecture of the system, i.e., of
the Ethereum blockchain with the Recoverable Token smart
contracts and client (RCV App), users, and a storage service
(IPFS). To interact with the system, users need private keys.
The tokens owned by an account are stored and managed by
the smart contracts deployed on the blockchain. These smart
contracts are extended with the functionality of those that
implement our recovery mechanism: RCVToken, Claims, and
Profiles. Users also need to have access to an Ethereum node to
send transactions (value transfers or smart contract calls) and
propagate them to other nodes so that they may be validated
and appended to the chain. The system will also make use of
a decentralized, tamper-resistant, content-addressable, peer-to-
peer storage network.

B. Attack Model

A user can be a regular user or an arbitrator. The regular
users (that we often designate simply as users) are those
entities that use the tokens provided by smart contracts. They
own the tokens and can perform any actions just as they
would if there was no recovery mechanism in the system.
The recovery mechanism allows these users to submit claims
that may escalate to disputes and in turn lead to account
recoveries being performed. Arbitrators are special users who
have permission to rule disputes.
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Fig. 1: Recoverable Token system architecture. A user which owns a private key is able to use the RCVApp to connect to a
node of the Ethereum network and interact with the storage network. Each Ethereum node runs a local copy of an EVM and
maintains a copy of the chain. The smart contracts that comprise the token recovery mechanism and the token which is to be
recovered (shown in a grey background) are deployed on the blockchain.

Both regular users and arbitrators may positively contribute
to the system or play against it. A user or arbitrator that does
what it is supposed to is said to be correct, whereas one that
deviates from that behavior is said to be malicious. Some
possible attacks that users may try to perform against our
mechanism include: submitting false claims; exploiting bugs;
colluding with arbitrators. Arbitrators have the ability to rule
on disputes, they may give dishonest rulings or none at all.
We assume that less than a third (f ) of the total amount of
arbitrators (n) participating in a dispute are malicious, i.e.,
n ≥ 3f + 1 (the same proportion as in common Byzantine
fault-tolerant consensus algorithms [21]).

We do the usual assumptions that Ethereum works as
expected and that cryptography is not compromised (e.g., no
transactions can be issued on behalf of a user without his
private keys).

C. Building Blocks

New features and standards for the Ethereum blockchain can
be proposed through the submission of Ethereum Improvement
Proposals (EIPs). These documents provide a technical specifi-
cation and a rationale of the proposal. Our approach leverages
some of these documents, although they are far from providing
a full solution for our problem.

EIP1080 is a proposal for a standard for an interface
used to implement a recoverable token [22]. At the time of
this writing, the proposal is still up for discussion and no
implementations exist.

EIP792 [23] and EIP1497 [24] propose interfaces for ar-
bitration and evidence submission, where a group of chosen
arbitrators make rulings on disputes. The claimant is also able
to submit evidence to a decentralized storage such as IPFS

[25] to support his claim and then link the evidence to the
dispute.

D. Recoverable Token Dispute Resolution

In order to perform any recovery actions, first a claim has to
be submitted, then escalated to a dispute, finally approved (or
denied). This approval is the result of the dispute resolution
mechanism. In the legal system there are several types of
dispute resolution mechanisms such as lawsuits, mediation and
arbitration. In the context of this paper, the one we will be
focusing on is arbitration.

Arbitration is a method of resolving disputes outside the
court of law, commonly used in commercial and consumer
disputes [26], [27]. Generically the process consists in two
parties that have a dispute to agree upon a group of arbi-
trators who ideally constitutes, as a group, an unbiased third
party. Then the arbitrators, after analyzing the arguments and
evidence provided by both parties, will make a decision in
favor of one party or neither. A dispute involves the payment
of a fee that is used to reward the arbitrators for their work,
i.e., as an incentive for them to do their job.

The method we decided to use to choose arbitrators relies on
address whitelisting. This means that there is a known group
of arbitrators who are trusted by the community to resolve
disputes by voting. A new arbitrator is able to join the group
if all the current members agree on it and the same process
is used to remove a member. There are more decentralized
alternative methods to select arbitrators such as the one used
by both Kleros [28] and Aragon [29] which essentially require
users to stake their tokens so that they are allowed to arbitrate.

This mechanism is supported by an evidence submission
standard proposal [24] that enables linking evidence to dis-



TABLE I: Public methods of the three contracts

Method Name Description
RCVToken contract
claimLost(lostAccount) Reports the lostAccount address as being lost
cancelLostClaim() Reports the current address as not being lost
reportStolen() Reports the current address as being stolen. If successful the sender’s tokens are frozen
chargeback(pendingTransferNumber) Requests a reversal of the transfer number pendingTransferNumber on behalf of the sender
get/setPendingTransferTime(account) Get/Set the time an account has to chargeback a transfer
get/setLostAccountRecoveryTime(account) Get/Set the time account has to wait before a lost account dispute can start
submitMetaEvidence(claimID, metaEvidence) Link a meta evidence URI to a claim
submitEvidence(claimID, evidence) Link an evidence URI to a claim
signUp(transferTime, recoveryTime) Sign up an account to allow recovery actions
addRecoveryInfo(recoveryAccount, proof, identity) Submit the proof of ownership of the current account
Claims contract
createLostClaim(claimant, lostAccount) Create a new lost claim
createStolenClaim(claimant) Create a new stolen claim
createChargebackClaim(claimant, pendingTransferID) Create a new chargeback claim
voteOnClaim(claimID, vote) Vote on claim number claimID
rule(claimID, ruling) Enforce ruling on claim number claimID
Profiles contract
appeal(disputeID, extraData) Request an appeal for a dispute
appealCost() Return the cost of requesting an appeal
appealPeriod() Return the time window for appealing a ruling
arbitrationCost(extraData) Return the cost of submitting a claim
currentRuling(disputeID) Return the current ruling of a dispute
disputeStatus(disputeID) Return the status of a dispute
isPendingTransfer(transferID) Check whether transfer status is pending

putes. In our case, evidence is an URI that links to a file
hosted on IPFS [25]. That file contains some form of argument
towards the resolution of the dispute, i.e., towards the recovery
being accepted. The processing of the documents is done by
the human arbitrators, so the format of the files is opaque
to the system. The linking between a claim and the file is
then performed by executing a smart contract call such as
submitMetaEvidence which will end up emitting an event that,
in turn, is stored on the event log of the resulting transaction.
Users are then able to query the blockchain for events emitted
by the smart contract and retrieve all evidence related to a
particular dispute.

Our dispute resolution mechanism starts with the creation
of a new dispute by calling one of the createLostClaim,
createStolenClaim or createChargebackClaim methods. After-
wards, arbitrators analyze the submitted evidence and commit
to a ruling decision, or in other words, vote. Then, after at
least two thirds plus one arbitrators (2f + 1) have voted,
the rule method is called to get the final ruling based on
the decisions of the participating arbitrators. This is the same
proportion as in common Byzantine fault-tolerant consensus
algorithms [21]; it ensures that the process does not stall
waiting for malicious arbitrators (there are at most f malicious
and n ≥ 3f + 1) and a majority of the 2f + 1 arbitrators are
not malicious.

Next, there is another time window (known by calling
appealPeriod) in which the claimant may appeal the decision.
This can be done by calling the appeal method, which requires
a fee known by calling appealCost. If no appeal is started or
the appeal period is over, then the appropriate recovery action
is performed according to the given ruling and a fee is split

between the participating arbitrators.
Note that the dispute resolution and the evidence submission

mechanisms adhere to the EIP792 and EIP1497 interfaces
respectively, but their functionality goes beyond what these
documents propose (they are not about recovery).

E. Intrusion Recovery

Now that we understand the components that make up the
recovery mechanism we can start to describe how it can be
used to address three problematic scenarios. Consider that
Alice is the owner of a wallet – or individual address – that
contains digital assets in the form of Ethereum tokens and Eve
is an ill-intentioned user. The scenarios are:

• S1: Alice misplaced the seed phrase for her wallet and
therefore has lost access to all the addresses stored within.

• S2: Eve obtains access to the private key of an Alice’s
address.

• S3: Alice pays Eve for a good or a service but Alice does
not receive what she had paid for.

S1, S2 and S3 correspond respectively to account loss,
account theft and chargeback cases (Section I).

In scenarios S1 and S2 the recovery mechanism requires the
use of a recovery account. This account is set up by the user
and it has the important role of receiving the lost or stolen
tokens.

For account loss scenarios (S1), the protocol executed by the
participating entities is shown in Figure 2. The process begins
with the user submitting a loss claim (calling claimLost) to the
RCVToken contract. This requires a fee to be paid; the value
of the fee can be discovered by calling the arbitrationCost
method in the Profiles contract (not shown in the figure).



/* MetaEvidence.json */
{

fileURI:
"ipfs://QmWRUgLu9iRk...",

fileHash:
"QmWRUgLu9iRk...",

fileTypeExtension: ".txt",
category: "Lost Claim",
description: "I lost access to my address.",
question:

"Should the tokens be transferred
to the specified recovery account?",

rulingOptions: {
type: "single-select",
titles: ["Yes", "No"],
descriptions: [
"The account is indeed lost.
Tokens will be transferred
to the specified recovery account",
"There is not enough proof to conclude
that the account is lost.
Tokens will remain in the account.",

],
},

}

Listing 1: Example meta evidence file

Moreover, it will call the createLostClaim method which
creates a new loss claim which in turn will call addNewClaim
which links it to the claimant’s profile. Then, depending on
the specific account configuration there is a time window (set
with setLostAccountRecoveryTime), in which this claim can
be cancelled (by calling the cancelLostClaim method using
the account that is claimed to be lost). This is necessary in
case of someone falsely claiming that a specific account is lost,
by gaining access to a recovery account instead of the main
account. This time window allows the owner of the address to
deny the claim therefore proving that the account was in fact
not lost. This is also not shown in the figure, as it considers
the case in which the account recovery process is successful.

During this period the claimant has to submit a meta
evidence file (calling submitMetaEvidence) that contains in-
formation regarding the context of the dispute and references
an URI to a file which is the basis of the dispute (an example
of the evidence file is in Listing 1). Without this the claim is
unable to escalate to a dispute.

If the time window passes and the claim is not cancelled,
then the dispute resolution mechanism begins. In a nutshell,
dispute resolution will decide if the tokens should be trans-
ferred to a recovery account. This means that arbitrators can
now vote on the dispute using the voteOnClaim method. The
status of the claim is updated on each new vote. When the
voting period ends, if two thirds of the arbitrators have voted
one of them may call giveRuling to enforce the final ruling of
the dispute and perform the recovery action which in this case
is to transfer the tokens to the recovery account, otherwise the
claim is cancelled. Although not shown in the figure, a subset
of the voting period is reserved for appeals where the claimant
is able to appeal the ruling before the arbitrators are capable
of enforcing it.

In case of account theft (S2), the process is very similar

Fig. 2: Example of a successful lost claim (without an appeal)

with only some slight differences. In fact we do not present
a diagram like Figure 2 because it would be very similar.
First of all, only accounts that have a proof of ownership
linked to them can be reported as stolen. The proof of
ownership is the digital signature of a message that contains
three elements: an identity and the addresses of the account
and its corresponding recovery account. One difference when
compared to the account loss scenario is that there is no time
window in which the claim can be cancelled but instead the
tokens owned by the account are frozen. After the claim is
submitted and the meta evidence file is provided, the dispute
resolution mechanism starts. Similarly to S1, the tokens are
transferred to a recovery account linked to the one claimed to
be stolen.

Finally, when dealing with chargeback scenarios (S3), a
request is submitted to chargeback a pending transfer. Again
we do not present a figure due to the similarity. A transfer
is considered pending when the amount of time specified
by the account configuration has not yet passed since the
transfer was performed. As is usual, when the chargeback
claim is submitted and the meta evidence is provided, the
dispute resolution mechanism starts. In this case the tokens
are returned to the account that first performed the transfer,
i.e., the claimant, not the recovery account that does not need
to exist.

The time complexity of all protocols is O(1), i.e., there
is a constant bound on the number of communication steps.
The message complexity is O(n), where n is the number of
arbitrators.



F. Recoverable Token Application

As user interface (UI), we designed an application tailored
to both regular users and arbitrators (RCV App in Figure
1). For a regular user, the application allows: signing up
to the Recoverable Token system; generating and submitting
proof of ownership; submitting new claims; tracking on-going
claims and disputes; tracking pending transfers; submitting
evidence; appeal the rulings given to disputes. For arbitrators
the applications allows them to: view claims and disputes;
access the evidence linked to disputes; rule (or vote) on
disputes.

III. IMPLEMENTATION

In this section we delve deeper into details regarding the
implementation.

Profiles

IERC1080

IEvidenceIArbitrable

ERC721

IArbitrator
RCVToken

RCVLib

Claims

Ownership

Fig. 3: Smart contracts used with inheritance relations

To implement the bulk of the Recoverable Token func-
tionalities we developed a set of smart contracts written
in the Solidity programming language. Figure 3 shows the
inheritance relationships between the main types of contracts.
Profiles is the smart contract that holds information about all
the addresses that signed up to use the application.

It implements the IArbitrator interface of the EIP 792 [23].
Additionally, it references the Ownership library which has
the necessary functions to validate the proof of ownership of
an account.

The role of the Claims contract is to hold the information
related to any sort of dispute, i.e., lost, stolen or chargeback
claims. Through it arbitrators can vote on claims and enforce
rulings by calling the methods shown in Table I.

Finally, the RCVToken contract implements the Recoverable
Token interface and extends the token that is the target of
recovery, e.g., an ERC20 or ERC721 token. A non-arbitrator
user may perform the necessary actions to recover the tokens
belonging to an account via the methods described in Table
I. Depending on the type of token being extended, there is a
need to modify the token transfer function so that the account
freezing functionality may be added. An example of what
modifications are required is seen in Listing 2.

/* RCVToken.sol */
function transferFrom(

address from,
address to,
uint256 tokenID

) public override {
RCVLib.Profile memory profile =

_profiles.getAccountProfile(from);
require(!profile.isClaimedStolen, "FROZEN");
super.transferFrom(from, to, tokenID);
uint256 transferNumber =

_profiles.addTransfer(from, to, tokenID);
emit PendingTransfer(

from, to, tokenID, transferNumber
);

}

Listing 2: Changes to transferFrom function

All the mentioned contracts share a library – RCVLib – that
stores definitions of structures used across them. As for the
UI (Section II-F), it is essentially a command line tool that
allows interacting with the RCVToken contract.

TABLE II: Recoverable Token contracts’ source code metrics

Contract Deployed Bytecode Gas LoC
RCVToken 23919 bytes 5412412 186 lines
Claims 23411 bytes 5203042 372 lines
Profiles 13250 bytes 2948864 266 lines

We obtained source code metrics of the deployed smart
contracts: deployed bytecode, which is the size of bytecode
that is stored on-chain; gas, the amount of gas used to deploy
the contract; lines of code, number of source code lines –
excluding comments – after running a code formatter. Looking
at Table II, we notice that the RCVToken contract has the
highest size per lines of code ratio. This is due to the fact
that it extends the contract that implements the ERC721 token
which already has a size of 13867 bytes, therefore having an
overhead of 10052 bytes. Furthermore, as is to be expected, the
amount of gas increases linearly with the size of the deployed
bytecode. We also recognized that the deployed bytecode size
of the RCVToken contract needs to be addressed. The reason
being that the hard cap put on the size of the objects that
can be stored on-chain is equal to 24576 bytes according to
EIP170 [30]. The security of smart contracts is an important
concern today [31], [32], but our smart contracts are small.
Moreover, the code can be checked using a code verification
tool [33].

IV. EXPERIMENTAL EVALUATION

To perform our evaluation we deployed the smart contracts
on Ropsten, a public test network for Ethereum that to most
extent mimics the Ethereum main network. This allowed us to
request ether from publicly available faucets for free.

In the evaluation, we assess the cost in terms of both time
(Section IV-A) and gas (Section IV-B) for all three main use
cases of the system: trying to recover from the scenarios S1, S2
and S3 (Section I). All the metrics represented are the result of



calculating the average of 20 claims performed in the Ropsten
testnet. In every scenario the account to be recovered only
holds one token and there are three arbitrators ruling on the
claim.

A. Time consumption

Fig. 4: Breakdown of lost claim dispute resolution

Fig. 5: Breakdown of stolen claim dispute resolution

Fig. 6: Breakdown of chargeback claim dispute resolution

Figures 4, 5 and 6 include charts of the time data shown in
Table III. In both the lost and stolen claim scenarios we notice
that the submitMetaEvidence occupies the largest portion of
the total time to complete each one. The reason for this is not
that it is the most computationally expensive operation, quite
the opposite as shown by its gas consumption charts which
are also represented in the respective figures. Since its gas
consumption is so low, miners do not prioritize it in the blocks
they are trying to solve. This is a consequence of the proof-
of-work consensus algorithm used in the Ropsten testnet. All

TABLE III: Time breakdown for the 3 dispute resolution cases

Action Time (s) Time (%) σ

Lost claim dispute resolution
claimLost 18.40 15.04 14.37
submitMetaEvidence 47.80 39.09 39.66
voteOnClaim 20.04 16.38 11.93
giveRuling 36.05 29.48 39.19
Stolen claim dispute resolution
addRecoveryInfo 22.52 15.70 20.63
reportStolen 17.40 12.14 11.07
submitMetaEvidence 43.39 30.26 27.81
voteOnClaim 18.44 12.86 10.90
giveRuling 41.65 29.04 30.80
Chargeback claim dispute resolution
transfer 12.03 20.42 7.44
chargeback 11.53 19.58 6.25
submitMetaEvidence 9.99 16.96 6.16
voteOnClaim 15.96 27.09 14.98
giveRuling 9.40 15.96 4.83

the other actions take approximately 20 seconds to perform. In
regards to the chargeback claim scenario, the network activity
during the execution of the tests was much higher and therefore
blocks were added to the chain at a faster rate (much closer to
every 10 seconds). The calculated standard deviation supports
this claim since as the network activity grows so does its
stability. This is the reason for the standard deviation values in
the chargeback scenario not resembling the ones in the other
two. Additionally, note that these results are coherent with the
fact that blocks in the Ropsten testnet are mined approximately
every 10 to 20 seconds.

B. Gas consumption

Any transaction requires gas to be executed. Gas is a
unit used in Ethereum to measure the computational effort
of executing a transaction. When creating a transaction it is
necessary to pay for the amount of gas that it will consume
using ether. The sender of the transaction offers a value for
each unit of gas. It is possible to estimate how much gas a
transaction will spend since every instruction has a set gas
cost.4 While the amount of gas a transaction will require is
mostly predictable, the price to pay for each unit of gas is not.
It depends on different factors such as the number of pending
transactions and the number of active miners and how fast you
want it to be confirmed in the blockchain [34]. To determine
how much the price will be in terms of a fiat currency (e.g.,
euros or dollars) the formula is:

gasPrice × gasCost × etherCost

where gasPrice is the price of each unit of gas in ether,
gasCost is the amount of gas the transaction requires and
etherCost is the conversion rate from ether to the desired fiat
currency. As the gas price offered by the sender increases so
does the likelihood of a miner adding that specific transaction
to the block it is mining because the reward he gets from doing
so also increases.

4https://github.com/crytic/evm-opcodes



In relation to gas, we also notice that in each scenario the
most computationally expensive operation is the one that is
responsible for submitting the claim as shown in Figures 4, 5
and 6, as well and in Table IV. This corresponds to claimLost
for lost claims, reportStolen for stolen claims and chargeback
for chargeback claims. These operations are among the ones
which do not have a constant gas cost, i.e. a non-zero standard
deviation, which we believe is a result of the initialization and
iteration of the data structures that store information about the
different types of claims.

TABLE IV: Gas breakdown for the 3 dispute resolution cases

Action Gas Gas (%) σ

Lost claim dispute resolution
claimLost 310725 46.12 0
submitMetaEvidence 69514 10.32 778
voteOnClaim 95705 14.20 0
giveRuling 197834 29.36 0
Stolen claim dispute resolution
addRecoveryInfo 144544 17.65 3
reportStolen 286530 35.00 3354
submitMetaEvidence 70107 8.56 0
voteOnClaim 94266 11.51 0
giveRuling 223371 27.28 0
Chargeback claim dispute resolution
transferFrom 292092 29.34 18880
chargeback 315802 31.72 14300
submitMetaEvidence 71089 7.14 0
voteOnClaim 96278 9.67 215
giveRuling 220315 22.13 0

V. RELATED WORK

A. Intrusion Recovery

The problem of intrusion recovery has been studied for
different kinds of systems. In [10] the authors present a generic
algorithm to recover from intrusions that works in three steps:
a rewind step that rolls back the system to a point in time prior
to the attack, a repair step in which the faulty operations are
erased from the log, and a replay step to re-execute every
operation in log. By the end of the third step the system
no longer has the effects of the attack but it keeps every
legitimate operation that occurred. This three-step algorithm
was adopted in other works [11]–[16]. Our work aims to
solve a similar problem by reverting the effects of undesired
operations. However, the approach we use is more in line with
the execution of compensating transactions [35], [36]. These
kind of transactions aim to revert the effects of the intrusion
without requiring the system to be rolled back to a previous
point in time allowing the system to be recovered without
shutting it down. A compensating transaction can be thought
of as an inverse operation of the intrusion. Some systems that
use this method of recovery are [13], [37]–[42].

B. Blockchain Recovery

Forks which are an expected occurrence as a result of the
design of the blockchain may also be leveraged to perform
blockchain recovery. One instance where a fork was used as

a recovery mechanism was the response to The DAO hack
[43]. Essentially a smart contract that implemented it had a
vulnerability which allowed the attacker to steal over $50M
USD worth of ether at the time. After a number of proposals
the community as a whole voted for forking the chain to a state
before the hack ever happened. As a result some community
members which did not agree with the decision as they argued
that it put into question the ledger immutability attribute of
blockchains decided to continue with the original Ethereum
chain which is now Ethereum Classic.

Removing or editing data [17], [18] from the blockchain
has also been a topic of research. The general idea is to
be able to modify confirmed blocks without breaking the
links between them. This may be useful when dealing with
removing references to illegal or unwanted information that
was submitted to the blockchain, or to work towards making
the blockchain GDPR [44] compliant.

For cases where a private key may have been stolen and
transactions performed without the consent of the rightful
owner, transaction reversion mechanisms such as Reversecoin
[19] and more recently Blockd [20] have been proposed.
Usually these types of work rely on replacing or cancelling
transactions while they have not yet been submitted to or
confirmed in the blockchain.

C. Dispute resolution
The idea to bring dispute resolution to the blockchain is

being explored. Kleros [28] has been working on a decentral-
ized arbitration application in which crowdsourced arbitrators
give rulings on disputes. The arbitrators are expected to rule
correctly and fairly as a result of game theoretical incentives.

Aragon [29], a software used to create and govern organi-
zations on the Ethereum blockchain, has a component named
Aragon Court that works similarly to Kleros but is limited to
organizations in the Aragon Network whereas Kleros does not
have that restriction.

Mattereum [45] is working on creating an infrastructure to
build a layer to manage property or assets on-chain. As it
is the case with several types of transfers, disputes may arise,
thus a dispute resolution mechanism had to be developed. The
approach taken was akin to the standard used in common arbi-
tration courts. When a dispute is raised, either both parties had
a predetermined agreement where the arbitrator had already
been chosen, or alternatively and by default, an arbitrator is
appointed from a panel of arbitrators.

VI. CONCLUSION

This paper presented Recoverable Token, a system that
combines several standards in order to provide an opportunity
for recovering digital assets stored on the Ethereum blockchain
without modifying its fundamental properties.

To evaluate our system we applied it to an application
that implements an ERC721 token and demonstrated that it
is possible to recover the tokens in a variety of scenarios.

We concluded by discussing work related to intrusion
recovery, blockchain recovery and dispute resolution on the
blockchain.
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