
JusticeChain: Using Blockchain to Protect
Justice Logs

Rafael Belchior1,2, Miguel Correia1,2, and André Vasconcelos1,2

1 Instituto Superior Técnico, Portugal, Universidade de Lisboa, Lisboa, Portugal
2 INESC-ID, Lisboa, Portugal

{rafael.belchior,miguel.p.correia,andre.vasconcelos}@tecnico.ulisboa.pt

Abstract. The auditability of information systems plays an essential
role in public administration. Information system accesses are saved in
log files so auditors can later inspect them. However, there are often
distinct stakeholders with different roles and different levels of trust,
namely the IT Department that manages the system and the govern-
ment ministries that access the logs for auditing. This scenario happens
at the Portuguese judicial system, where stakeholders utilize an informa-
tion system managed by third-parties. This paper proposes using block-
chain technology to make the storage of access logs more resilient while
supporting such a multi-stakeholder scenario, in which different enti-
ties have different access rights to data. This proposal is implemented
in the Portuguese Judicial System through JusticeChain. JusticeChain
comprises the blockchain components and blockchain client components.
The blockchain components grant log integrity and redundancy, while
the blockchain client component is responsible for saving logs on be-
half of an information system. The client allows end-users to access the
blockchain, allowing audits mediated by the blockchain.

Keywords: Blockchain, auditing, audit logs, public administration

1 Introduction

Organizations have the responsibility of protecting their sensitive data, a valu-
able resource that often guides business decisions. Access control mechanisms
aim to identify subjects that require access to resources and allow or deny them
the access, based on the context of the request [7]. Users that utilize such sys-
tems leave digital traces recorded in log files. Auditors can later analyze such
log files, for example, to assess that no parties are using the systems for illegal
purposes or to gain an unfair advantage.

At the Portuguese judicial system, there is an information system to manage
judicial processes at courts that supports several stakeholders. The entity that
maintains that the system faces different incentives from the stakeholders that
use it, leading to a multi-stakeholder scenario with uncertain trust among them.
In such a scenario, separate entities have different access rights to data. Threats
to log integrity, like data tampering, have to be minimized, as they can invalidate



2 R. Belchior et al.

audits because tampered data cannot be trusted [3]. This paper proposes the
use of blockchain technology to overcome the problems with the integrity of
logs and support auditing, by assuring that no entity or individual can tamper
the logs, allowing to build a transparent and collaborative network. Blockchain
technology has emerged as a vehicle for decentralization, transparency and trust
while conserving security, privacy and control, which can leverage auditability
and trust distribution [9], both critical requirements for information systems at
public administration.

In particular, we introduce JusticeChain, a system to store, protect and de-
centralize applicational logs built on top of a permissioned private blockchain,
Hyperledger Fabric [1]. JusticeChain receives log entries from a set of oracles,
processes them at the Log Manager component, and acts as a client to the un-
derlying Hyperledger Fabric infrastructure. The Audit Log Manager component
can be used by authorized auditors to read logs from the blockchain.

2 Preliminaries on JusticeChain

Security risks such as data tampering, denial of service (DoS / DDoS), man-in-
the-middle attacks, identity theft, and spoofing pose severe challenges concerning
the security of any information system. We focus on the data tampering problem,
for it is one of the most frequent security risks, and the one with the most impact
on Portuguese public administration audits. We considered different blockchain
infrastructures, both public and private. Public blockchains such as Bitcoin and
Ethereum are not suitable, as sensitive information cannot be easily stored and
retrieved efficiently. Private infrastructures, such as Quorum, Corda, and Multi-
chain seem to be less stable and may lead to lower throughput rates than Fabric.
Fabric was found to be the most appropriate blockchain, as it is backed by a
large active community and has a significantive maximum throughput [1].

JusticeChain improves log resilience in two ways: it records applicational logs
from information systems with different stakeholders and secures them on the
blockchain; it decentralizes the storage of such logs, resulting in higher redun-
dancy and availability. Therefore, it allows authorized auditors to analyze the
usage of the system with integrity guarantees. The auditing process is decentral-
ized and transparent for all participants on the network, due to programs (smart
contracts, or chaincode in Fabric’s lingo) that inspect logs. The threats to which
logs are exposed and that are mitigated by JusticeChain are the following:

• T1: Log tampering from an external element.
• T2: Database tampering from an internal adversary
• T3: Log tampering by the system administrator
• T4: A participant tries to edit logs that are protected by the blockchain.
• T5: The majority of participants conspire and try to modify the logs.

The fact that Fabric allows the creation of a permissioned blockchain, where
participants are vetted, allows reducing the risk of collusion. Fabric records up-
dates to the configurations of the system and deployments of chaincode. This



JusticeChain: Using Blockchain to Protect Justice Logs 3

process enables the straightforward identification of the subject that initiated
specific actions, being a demotivating factor for adversaries.

2.1 System Model

The use case addressed in this paper presents three characteristics: (i) the par-
ticipants are willing to cooperate but have limited trust in each other, (ii) the
trust and responsibility of managing the logs belong to all stakeholders and
(iii) one organization should be able to administer the network, in accordance
with the governance model. Regarding the first and second aspects, the use of
a consensus algorithm to reach agreement ensures that no single entity controls
the blockchain. Concerning the third characteristic, permissioned blockchains as
Hyperledger Fabric allow the delegation of a different level of control to specific
participants [1].

We assume a worst-case scenario in which participants have limited trust
on each other (e.g., have different political incentives). Fabric supports sub-
blockchains called channels; we use a single channel that is used by all partic-
ipants. Participants control peer nodes which maintain the ledger and endorse
transactions. JusticeChain allows data management, through Log pre-processing
(i.e., standardization, automatic analysis and attribute checks), which is lever-
aged by distributed chaincode execution (i.e., the execution of programs in block-
chain nodes). Although those are useful features, JusticeChain focuses on assur-
ing data integrity and distribution, by storing logs by authorized loggers and
retrieving them to authorized auditors. There are three actors (participants)
who take part in the ecosystem:

• Logger : receives log entries from information systems and uploads them to
the blockchain, belonging to a member participant. They act as blockchain
clients and can be considered to be oracles (in blockchain lingo).

• Auditor : audits secured applicational logs on behalf of an organization. Audi-
tors have a set of permissions, allowing for fine-grain permissions for auditing
purposes.

• Network Administrator : manages the blockchain configurations. Responsible
for creating and managing participants within the blockchain

2.2 Data Model

JusticeChain has a data model that addresses the business concerns about man-
aging applicational logs. Participants defined in Section 2.1 interact with the
data in the following ways:

• Network Administrator (Admin): can see the whole ledger, the whole trans-
action history and update participants. However, they cannot create, update
or delete applicational logs.



4 R. Belchior et al.

• Auditor : minimizes the risk associated to threat T5 . An auditor member
participates in the network, monitoring the flow. If the adversaries try to
change their states, the auditor node would perceive such change, as there
would be state inconsistencies across nodes. The auditor can be given per-
missions by the system administrator to enforce synchronization of the state
of the ledger if needed. Auditors can only see part of the ledger – logs associ-
ated with the auditors organization and the transaction history that affects
the network configurations.

• Logger : can create logs associated with one information system. For instance,
a Logger associated with System A can create an asset type Log-A, but
cannot create an asset of type Log-B.

The ecosystem aims to protect an asset, the Log.

• Log : has a unique identifier, timestamp, log creation timestamp, an associ-
ated Logger and case-specific attributes. In the Portuguese justice, there are
attributes which represent the universal unique identifier of the user, the
audit and also the related court. A timestamp attribute is associated with
each entry, as latency issues can place gaps between the log generation and
log recording on the blockchain. Several log types can be defined, depending
on how many information systems participate in the network. Only Loggers
can create Logs, and no entity can update or delete logs.

The process of executing and validating chaincode can produce Events, which
applications may listen and take actions upon.

Transactions are requests to the blockchain to execute a function on the
ledger. Transactions can affect participants and assets. Chaincode written in
NodeJS creates logs that are recorded on the immutable ledger, via a transaction.
We defined a transaction to create a Log type asset, as logs are created through
the issuing of such transaction, by an authorized logger.

3 JusticeChain Overview

This section presents an overview of JusticeChain. JusticeChain allows decen-
tralizing trust concerning logging. The assets to be protected are applicational
logs generated by an information system related to the judicial system, in our
case. The proposed solution is scalable when it comes to supporting different
organizations, different types of logs and different auditors. The architecture is
represented in Figure 1, using the Archimate modelling language [4].

The blockchain component stores applicational logs and enforces blockchain
configurations concerning the different participants on the network. The block-
chain client component ensures that participants can access the applicational logs
via submitted transactions, and can audit logs, under certain circumstances.



JusticeChain: Using Blockchain to Protect Justice Logs 5

Fig. 1. JusticeChain Architecture

3.1 Blockchain Components

JusticeChain leverages Hyperledger Composer (or simply Composer)3 that, in
its turn, uses Hyperledger Fabric to launch and operate a blockchain ecosystem.
Composer is an abstraction built on top of Hyperledger Fabric that simplifies
the development of blockchain solutions. Through the definition of endorsement
policies, one can put more or less trust in a specific set of endorser peers, making
the trust system independent from the consensus algorithm to be used [1]. Unlike
the public ledger whose truthfulness is guaranteed by the design of consensus
processes, it is the endorsement policy that guarantees consensus on the net-
work. For instance, one can define that for a transaction to be valid, peers from
organization A and organization B must yield the same result with respect to the
execution of specific chaincode. A custom trust system allows an organization
to administer the network, while assuring that it cannot take unfair advantages
out of it, thus distributing trust.

In this use case, we use two different chaincodes (i.e., programs): chaincode
that creates instances of applicational logs (S1 ) and chaincode that accesses
the ledger (S2 ), regains logs and retrieves them to the end-user. Chaincode S1
receives the attributes necessary to create a Log from the Log Manager, validate
them, apply pre-processing (if needed) and commit the new data to the ledger,
by issuing a transaction. Chaincode S2 queries the blockchain for a specific type
of Logs.

3 https://www.hyperledger.org/projects/composer



6 R. Belchior et al.

Fig. 2. JusticeChain Blockchain Architecture - Example with a consortium composed
of four organizations (A,B,C,L), five peers (Peer A, Peer B, Peer C, Peer L, Peer
L (Logger)), one orderer (O), one certificate authority (L-CA), a channel CC1, and
network configurations (NC).

A custom certificate authority (CA) is used to issue identities for each par-
ticipant on the network. Each organization that participates in the network, and
thus interested in auditing a specific information system should maintain at least
a peer node that holds an instance of the ledger. As applicational logs should
not be shared amongst different member organizations, one has to define access
control rules that manage that flow (e.g., only Admins and Auditors from orga-
nization A can see applicational logs from A, only Loggers from organization A
can create type A Logs). Composer allows the definition of such access control
rules, by associating an operation (READ, UPDATE, CREATE, DELETE) and
an action (ALLOW, DENY) to an Asset (e.g., Log). JusticeChain supports sev-
eral stakeholders, which do not need to belong to the same organization. Fabric
supports different solutions to ensure data privacy between organizations (e.g.,
Auditor from organization A cannot see logs from organization B):: i) create a
different channel; ii) use the private data functionality of Fabric; and iii) tune
access control rules via Composer. Private data can be used in this case4, which
allows a subset of organizations the ability to endorse, commit, and query private
data.

Client application JusticeChain Audit Manager can use channel C1 to con-
nect to A, B, C, L, L (Logger), and Orderer O. Client application JusticeChain
Log Manager can use C1 to access L (Logger) and Orderer O. Applications can
only access the ledger L1 through the chaincode instantiated on their respective
peers.

3.2 Blockchain Client Components

JusticeChain is a full-stack application that leverages Fabric to secure audit logs
while providing support for automatized auditing techniques. The Composer

4 https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-
data.html



JusticeChain: Using Blockchain to Protect Justice Logs 7

REST Server is used to interact with the underlying Fabric blockchain; hence,
it is a blockchain client component.

As presented in Figure 1, the blockchain client comprises mainly two entities:
the Audit Manager and the Log Manager. Both the Audit Manager and the Log
Manager expose application programming interfaces (APIs), which allow the
Audit Frontend and JusticeChain Oracle to access JusticeChain functionalities.
JusticeChain, on its turn, communicates with the blockchain via the Hyperledger
Composer API. The JusticeChain blockchain client has several components:

• JusticeChain Client: is a collaboration between two components - Log Man-
ager and Audit Manager that aims to problem exposed in this paper.

• JusticeChain Oracle (Oracle): overcomes the inability of communicating with
the ”outside” world. An oracle in the context of our problem is a component
that retrieves applicational logs from an outward log repository.

• JusticeChain Log Manager (Log Manager): is connected to one or more
oracles. When the Log Manager receives a log, preprocessing is applied, as
anonymization or standardization. After that, the Log Manager submits a
transaction to the blockchain, on the correspondent Logger’s behalf.

• JusticeChain Audit Manager (Audit Manager): sends transactions to the
blockchain on behalf of the corresponding Auditor or Admin who needs to
audit logs. The transactions are, in fact, queries on the blockchain ledger.

• Audit Frontend: is a user interface that allows the stakeholders (Auditors
or Network Admins) to retrieve the applicational logs, via the Audit Log
Manager.

• Log Repository: corresponds to the repository that stores logs (i.e. database).
• Hyperledger Composer (REST) Server: is generated from a business network

archive and exposes an API that the JusticeChain client can use to access
the blockchain. Hyperledger Composer Server access Fabric using its API.

In addition to acting as a proxy between frontend applications and the block-
chain, the JusticeChain Client, allows end-user authentication to the blockchain
network. A local database stores local end user’s credentials. This way, one can
map local authentication credentials and the user’s cryptographic identity on
the blockchain network, providing traceability.

4 Related Work

In [2], a write-only logger creates log entries as a way to give integrity guar-
antees. More advanced solutions use a third-party notary service to prevent
data-tampering, along with cryptographic hashing, and partial result authenti-
cation codes [8]. Such solutions, although efficient, have a single point of failure,
where the centralized authority that grants integrity can collude with attackers.
Several solutions support forward security but depend at least partially on a
third-party [5]. Such solutions, although suitable, does not tackle the need for a
trust distribution.



8 R. Belchior et al.

In [6], the authors propose Logchain, a blockchain-assisted log storage sys-
tem. Logchain tries to decentralize trust on stakeholders that use a third party
service. Cloud participants have access to logs but, unlike JusticeChain, fine-
grain permissions related to audit are lacking.

5 Conclusion

This paper presented JusticeChain, a blockchain-based system which increases
trust in information systems managed by third-parties, regarding logging and
audits. In particular, JusticeChain aims to increase the resilience of applica-
tional logs used in the Portuguese justicial system, by assuring integrity and
redundancy. JusticeChain improves traditional logging systems by distributing
logs, where stakeholders depend on a centralized information system to conduct
their activities, which cause trust issues.

Acknowledgements This work was supported by national funds through Fundação para

a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019 (INESC-ID)

and by the European Commission program H2020 under the grant agreement 822404

(project QualiChain).

References

1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a
distributed operating system for permissioned blockchains. In: Proceedings of the
13th ACM EuroSys Conference (2018)

2. Bellare, M., Yee, B.S.: Forward Integrity For Secure Audit Logs. Tech. rep. (1997)
3. Chen, Z., Yang, Y., Zhang, R., Li, Z.: An efficient scheme for log integrity check in

security monitoring system. In: IET Conference Publications. vol. 2013, pp. 246–250
(2013). https://doi.org/10.1049/cp.2013.2026

4. Group, T.: ArchiMate R© 3.0 Specification. Van Haren Publishing (2016)
5. Ma, D., Tsudik, G.: A new approach to secure logging. In: Atluri, V. (ed.) Data and

Applications Security XXII. pp. 48–63. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2008)

6. Pourmajidi, W., Miranskyy, A.V.: Logchain: Blockchain-assisted log storage. 2018
IEEE 11th International Conference on Cloud Computing (CLOUD) pp. 978–982
(2018)

7. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commu-
nications 32(9), 40–48 (1994)

8. Snodgrass, R.T., Yao, S.S., Collberg, C.: Tamper Detection in Audit Logs. In: Pro-
ceedings of the Thirtieth International Conference on Very Large Data Bases -
Volume 30. pp. 504–515. VLDB ’04, VLDB Endowment (2004)

9. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: An Overview of
Blockchain Technology: Architecture, Consensus, and Future Trends (2017).
https://doi.org/10.1109/BigDataCongress.2017.85


